If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-15n=0
a = 7; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·7·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*7}=\frac{0}{14} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*7}=\frac{30}{14} =2+1/7 $
| 31-9c=5(c-5) | | 2+22=-3(6x-8) | | X-1-(2-x)/2+x=0 | | 6(p+5)-3((p-2)=12p+18 | | 5n^2-1.54n+6=142 | | 11b+3=4b-18 | | x^2+10x+25=44 | | 4(3a-2)=2a+2 | | 2g+3(−5+5g)=1−g | | -1+푥6=-2x | | 7z+1/9=8z+7/9 | | 5a+6=12(a-3) | | 3(2x+5)=-48+51 | | 5z-3=z+2(z-1) | | 6x-3-33=3(4x-3-5) | | 6+n=5(n-2) | | 105=-8d+9 | | 5.2x+3=9 | | 8/0x-5=-3 | | m-3=5(m-2) | | 12-4/5{x+15}=4 | | 4(2x+8)=-43+27 | | 3x+2(2x-2)=3x | | 5x-16=-24 | | x³=1/64 | | 103+51+w=180 | | 4c-2=5(c+3) | | 4(q-5)+12=2q | | 3(4x-2)+6=24 | | 4n–2n=4 | | 30=2n=12 | | -b+2=2(b-2) |